Boundedness of Bergman projections acting on weighted mixed norm spaces
نویسندگان
چکیده
We prove that Bergman projections on weighted mixed norm spaces smoothly bounded domains in $\mathbb{R}^n$ are for a certain range of parameters such and assuming conditions weights. The proof relies estimates integral means $M_p(P_\gamma f, r)$ terms $f$. This result complements earlier boundedness $P_\gamma$ closely related space $L^{p,q}_\alpha(\Omega).$
منابع مشابه
Boundedness of the Bergman Type Operators on Mixed Norm Spaces
Conditions sufficient for boundedness of the Bergman type operators on certain mixed norm spaces Lp,q(φ) (0 < p < 1, 1 < q <∞) of functions on the unit ball of Cn are given, and this is used to solve Gleason’s problem for the mixed norm spaces Hp,q(φ) (0 < p < 1, 1 < q <∞).
متن کاملHankel Operators on Weighted Bergman Spaces and Norm Ideals
Consider Hankel operators Hf on the weighted Bergman space L 2 a(B, dvα). In this paper we characterize the membership of (H∗ fHf ) s/2 = |Hf | in the norm ideal CΦ, where 0 < s ≤ 1 and the symmetric gauge function Φ is allowed to be arbitrary.
متن کاملBergman projections on weighted Fock spaces in several complex variables
Let ϕ be a real-valued plurisubharmonic function on [Formula: see text] whose complex Hessian has uniformly comparable eigenvalues, and let [Formula: see text] be the Fock space induced by ϕ. In this paper, we conclude that the Bergman projection is bounded from the pth Lebesgue space [Formula: see text] to [Formula: see text] for [Formula: see text]. As a remark, we claim that Bergman projecti...
متن کاملOperators on weighted Bergman spaces
Let ρ : (0, 1] → R+ be a weight function and let X be a complex Banach space. We denote by A1,ρ(D) the space of analytic functions in the disc D such that ∫ D |f(z)|ρ(1 − |z|)dA(z) < ∞ and by Blochρ(X) the space of analytic functions in the disc D with values in X such that sup|z|<1 1−|z| ρ(1−|z|)‖F ′(z)‖ < ∞. We prove that, under certain assumptions on the weight, the space of bounded operator...
متن کاملWeighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Turkish Journal of Mathematics
سال: 2023
ISSN: ['1303-6149', '1300-0098']
DOI: https://doi.org/10.55730/1300-0098.3387